El contenido de esta página requiere una versión más reciente de Adobe Flash Player.

Obtener Adobe Flash Player

Arquímedes nació en c. 287 a. C. en el puerto marítimo de Siracusa (Sicilia, Italia), que en aquel tiempo era una colonia de la Magna Grecia. La fecha de nacimiento se basa en una afirmación del historiador bizantino John Tzetzes que Arquímedes que vivió 75 años.

En «El contador de arena», cuyo título en griego es Psammites, Arquímedes menciona el nombre de su padre, Phidias, un astrónomo sobre el que nada se sabe.

Plutarco escribió en su obra Vidas paralelas que Arquímedes estaba emparentado con el rey Hierón II de Siracusa, aunque Cicerón decía que Arquímedes nació en una familia pobre. Un amigo de Arquímedes, Heráclides, escribió una biografía de Arquímedes. Sin embargo, este libro no se conserva, perdiéndose así detalles de su vida. Se desconoce, por ejemplo, si alguna vez se casó o tuvo hijos. Es posible que, durante su juventud, Arquímedes estudiase en Alejandría, en Egipto, donde Conon de Samos y Eratóstenes de Cirene eran contemporáneos suyos.

Se refería a Conon de Samos como su amigo y dos de sus trabajos (El Método de los Teoremas Mecánicos y el Problema del Ganado) tienen introducciones dirigidas a Eratóstenes.

Las últimas palabras atribuidas a Arquímedes fueron "No molestes mis círculos", en referencia a los círculos en el dibujo matemático que supuestamente estaba estudiando cuando lo interrumpió el soldado romano. La frase es a menudo citada en latín como "Noli turbare círculos meos", pero no hay evidencia de que Arquímedes pronunciara esas palabras y no aparecen en los relatos de Plutarco.

La tumba de Arquímedes tenía una escultura que ilustraba su descubrimiento matemático favorito, que consistía en una esfera y un cilindro de la misma altura y diámetro. Arquímedes había probado que el volumen y el área de la esfera son dos tercios de los del cilindro, incluyendo sus bases. En el año 75 a. C., el orador romano Cicerón estaba sirviendo como cuestor en Sicilia.

Este había oído historias acerca de la tumba de Arquímedes, pero ninguno de los locales fue capaz de decirle dónde se encontraba.

Eventualmente, encontró la tumba cerca de la puerta de Agrigento en Siracusa, en una condición descuidada y poblada de arbustos. Cicerón limpió la tumba, y así fue capaz de ver la talla y leer algunos de los versos que le habían escrito en ella.

Las distintas versiones de la vida de Arquímedes fueron escritas mucho tiempo después de su muerte por los historiadores de la Antigua Roma.

El relato del asedio a Siracusa escrito por Polibio en su Historia universal fue escrito alrededor de setenta años después de la muerte de Arquímedes, y fue usado como fuente de información por Plutarco y Tito Livio. Este esclarece puntos sobre Arquímedes como persona, y se enfoca en las máquinas de guerra que decía haber construido para defender la ciudad.

La anécdota más conocida sobre Arquímedes cuenta cómo inventó un método para determinar el volumen de un objeto con una forma irregular.

De acuerdo a Vitruvio, una nueva corona con forma de corona triunfal había sido fabricada para Hierón II, el cual le pidió a Arquímedes determinar si la corona estaba hecha de sólo de oro o si le había agregado plata un orfebre deshonesto.

Arquímedes tenía que resolver el problema sin dañar la corona, así que no podía fundirla y convertirla en un cuerpo regular para calcular su densidad.

Eventualmente, encontró la tumba cerca de la puerta de Agrigento en Siracusa, en una condición descuidada y poblada de arbustos. Cicerón limpió la tumba, y así fue capaz de ver la talla y leer algunos de los versos que le habían escrito en ella.

Las distintas versiones de la vida de Arquímedes fueron escritas mucho tiempo después de su muerte por los historiadores de la Antigua Roma. El relato del asedio a Siracusa escrito por Polibio en su Historia universal fue escrito alrededor de setenta años después de la muerte de Arquímedes, y fue usado como fuente de información por Plutarco y Tito Livio. Este esclarece puntos sobre Arquímedes como persona, y se enfoca en las máquinas de guerra que decía haber construido para defender la ciudad.

La anécdota más conocida sobre Arquímedes cuenta cómo inventó un método para determinar el volumen de un objeto con una forma irregular. De acuerdo a Vitruvio, una nueva corona con forma de corona triunfal había sido fabricada para Hierón II, el cual le pidió a Arquímedes determinar si la corona estaba hecha de sólo de oro o si le había agregado plata un orfebre deshonesto.[13] Arquímedes tenía que resolver el problema sin dañar la corona, así que no podía fundirla y convertirla en un cuerpo regular para calcular su densidad.

Mientras tomaba un baño, notó que el nivel de agua subía en la tina cuando entraba, y así se dio cuenta de que ese efecto podría ser usado para determinar el volumen de la corona. Debido a que el agua no se puede comprimir, la corona, al ser sumergida, desplazaría una cantidad de agua igual a su propio volumen. Al dividir el peso de la corona por el volumen de agua desplazada se podría obtener la densidad de la corona. La densidad de la corona sería menor si otros metales menos densos le hubieran sido añadidos.

Entonces, Arquímedes salió corriendo desnudo por las calles, tan emocionado estaba por su descubrimiento para recordar vestirse, gritando "¡Eureka!" (en griego antiguo: "εὕρηκα!," que significa "¡Lo he encontrado!)"

La historia de la corona dorada no aparece en los trabajos conocidos de Arquímedes. Además, se ha dudado que el método que describe fuera factible, debido al nivel de exactitud prohibitivo que se habría requerido para medir el volumen de agua desplazada.

En lugar de esto, Arquímedes podría haber buscado una solución en la que aplicaba el principio de la hidrostática conocido como el principio de Arquímedes, descrito en su tratado Sobre los cuerpos flotantes.

 

Este principio plantea que todo cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual al peso de fluido que desaloja. Usando este principio, habría sido posible comparar la densidad de la corona dorada con la de oro puro al usar una balanza.

 

Situando en un lado de la balanza la corona a investigar y en el otro una muestra de oro puro del mismo peso, se procedería a sumergir la balanza en el agua; si la corona tuviese menos densidad que el oro, desplazaría más agua debido a su mayor volumen y experimentaría un mayor empuje que la muestra de oro. Esta diferencia de flotabilidad inclinaría la balanza como corresponde.

Galileo creía que este método era "el mismo que usó Arquímedes, debido a que, además de ser exactísimo, depende todavía de demostraciones reencontradas por otras personas que ya lo han experimentado.

La idea de Arquímedes está reflejada en una de las proposiciones iniciales de su obra Sobre los cuerpos flotantes, pionera de la hidrostática; corresponde al famoso principio que lleva su nombre y, como allí se explica, haciendo uso de él es posible calcular la ley de una aleación, lo cual le permitió descubrir que el orfebre había cometido fraude.

 

Según otra anécdota famosa, recogida por Plutarco, entre otros, Arquímedes aseguró al tirano que, si le daban un punto de apoyo, conseguiría mover la Tierra; se cree que, exhortado por el rey a que pusiera en práctica su aseveración, logró sin esfuerzo aparente, mediante un complicado sistema de poleas, poner en movimiento un navío de tres mástiles con su carga.

 

Son célebres los ingenios bélicos cuya paternidad le atribuye la tradición y que, según se dice, permitieron a Siracusa resistir tres años el asedio romano, antes de caer en manos de las tropas de Marcelo; también se cuenta que, contraviniendo órdenes expresas del general romano, un soldado mató a Arquímedes por resistirse éste a abandonar la resolución de un problema matemático en el que estaba inmerso, escena perpetuada en un mosaico hallado en Herculano.

Estos son todos los trabajos sobrevivientes desde su existencia

 

Sobre el equilibrio de los planos (dos volúmenes)

 

El primer libro consta de quince proposiciones con siete axiomas, mientras que el segundo consta de diez. En esta obra, Arquímedes explica la ley de la palanca, la cual afirma:

Las magnitudes están en equilibrio a distancias recíprocamente proporcionales a sus pesos.

Arquímedes usa los principios derivados para calcular las áreas y los centros de gravedad de varias figuras geométricas, incluyendo triángulos, paralelogramos y parábolas.

Sobre la medida de un círculo

 

Esta es una obra corta, consistente en tres proposiciones. Está escrito en forma de una carta a Dositeo de Pelusio, quien fue un estudiante de Conon de Samos. En la proposición II, Arquímedes muestra que el valor de π (Pi) es mayor que 223/71 y menor que 22/7. Esta cifra fue usada como una aproximación de π a través de la Edad Media y aún hoy es usada cuando se requiere de una cifra cercana.

Sobre las espirales
Esta obra de 28 proposiciones también está dirigida a Dositeo. El tratado define lo que hoy se conoce como la espiral de Arquímedes. Este es el lugar geométrico de los puntos correspondientes a las posiciones de un punto, a través del tiempo, que es movido hacia afuera desde un punto fijo con una velocidad constantem junto con una línea que rota con una velocidad angular constante. Equivalentemente, en coordenadas polares, (r, θ) puede ser descrito por la ecuación
\, r=a+b\theta
con a y b como números reales. Este es un ejemplo temprano de la curva mecánica (una curva trazada por un punto) considerado por un matemático griego.
Sobre la esfera y el cilindro (dos volúmenes)

En este tratado, dirigido a Dositeo, Arquímedes llega a la conclusión de la que estaría más orgulloso, esto es, la relación entre una esfera y un cilindro cirscunscrito con la misma altura y diámetro. El volumen es \tfrac{4}{3}\pi r^3 para la esfera, y 2πr3 para el cilindro. El área de la superficie es 4πr2 para la esfera, y 6πr2 para el cilindro (incluyendo sus dos bases), donde r es el radio de la esfera y del cilindro. La esfera tiene un área y un volumen equivalentes a dos tercios de los del cilindro. A pedido del propio Arquímedes, se colocaron sobre su tumba las esculturas de estos dos cuerpos geométricos.

Sobre los conoides y esferoides

 

Este es un trabajo en 32 proposiciones dirigido a Dositeo. En este tratado, Arquímedes calcula las áreas y los volúmenes de las secciones de cono (geometría)s, esferas y paraboloides

Sobre los cuerpos flotantes (dos volúmenes)

En la primera parte de este tratado, Arquímedes explica la ley del equilibrio de los fluidos, y prueba que el agua adopta una forma esférica alrededor de un centro de gravedad. Esto puede haber sido un intento de explicar las teorías de astrónomos griegos contemporáneos, como Eratóstenes, que afirmaban que la tierra es redonda. Los fluidos descritos por Arquímedes no son auto-gravitatorios, debido a que él asume la existencia de un punto hacia el cual caen todas las cosas, dándole así la forma esférica.

La cuadratura de la parábola

En este trabajo de 24 proposiciones, dirigido a Dositeo, Arquímedes prueba por dos métodos que el área cercada por una parábola y una línea recta es 4/3 multiplicado por el área de una triángulo de igual base y altura. Obtiene esto calculando el valor de una serie geométrica que suma al infinito con el radio 1/4.

[O)stomachion

Este es un rompecabezas de disección similar a un Tangrama, y el tratado que lo describe fue encontrado en una forma más completa en el Palimpsesto de Arquímedes. Arquímedes calcula las áreas de las 14 piezas que pueden ser ensambladas para formar un cuadrado. Una investigación publicada en 2003 por el Doctor Dr. Reviel Netz de la Universidad de Stanford argumentaba que Arquímedes estaba intentando determinar en cuántas formas se podía ensamblar las piezas para formar un cuadrado. Según Netz, las piezas pueden formar un cuadrado de 17,152 maneras. El número de disposiciones se reduce a 536 cuando se excluyen las soluciones que son equivalentes por rotación y reflexión. Este puzzle representa un ejemplo temprano de un problema de combinatoria.

El origen del nombre del puzzle es incierto; se ha sugerido que puede haber surgido de la palabra griega para garganta, stómakhos (στόμαχος). Ausonio se refiere al puzzle como Ostomachion, una palabra griega compuesta por las raíces ὀστέον (osteon - hueso) y μάχη (machē - pelea). El puzzle es también conocido como el Loculus de Arquímedes o como la Caja de Arquímedes.

El problema del ganado de Arquímedes

 

Esta obra fue descubierta por Gotthold Ephraim Lessing en un manuscrito griego consistente en un poema de 44 líneas, en la Herzog August Library en Wolfenbüttel, Alemania, en 1773. Esta Está dirigida a Eratóstenes y a los matemáticos de Alejandría. Arquímedes los reta a contar el número de reses en la Manada del Sol, resolviendo un número de ecuaciones diofánticas simultáneas. Hay una versión más difícil del problema en la cual se requiere que algunas de las respuestas sean números cuadrados. Esta versión del problema fue resuelta por primera vez por A. Amthor en 1880,[43] y la respuesta es un número muy grande, aproximadamente 7,760271×10206544.

El contador de arena

 

En este tratado, Arquímedes cuenta el número de granos de arena que entrarían en el universo. Este libro menciona la teoría heliocéntrica del Sistema solar propuesta por Aristarco de Samos, e ideas contemporáneas acerca del tamaño de la Tierra y las distancias de varios cuerpos celestes. Usando un sistema de números basado en la capacidad de la miríada, Arquímedes concluye que el número de granos de arena que se requerirían para llenar el universo sería de 8×1063, en notación moderna. La carta introductoria afirma que el padre de Arquímedes era un astrónomo llamado Phidias. El contador de arena o Psammites es la única obra sobreviviente de Arquímedes en la que se habla de sus visiones sobre la astronomía.

El método de teoremas mecánicos

 

Este tratado fue considerado como perdido hasta el descubrimiento del Palimpsesto de Arquímedes, en 1906. En esta obra, Arquímedes usa infinitesimales, y muestra cómo el fraccionar una figura en un número infinito de partes infinitamente pequeñas puede ser usado para calcular su área o volumen. Arquímedes puede haber considerado este método careciente de rigor formal, así que también usó el método de agotamiento para llegar a los resultados. Al igual que El problema del ganado, El método de teoremas mecánicos fue escrito en forma de una carta dirigida a Eratóstenes de Alejandría.

 

 

HISTORIAL: Menu principal >> Biografias >>Arquímedes